C语言用数组1. 简单约瑟夫环问题: N个人,编号从1~N围成一圈,输入一个数T,从1号开始报数,报到T的人出圈;下一人又从1开始报数,下一个报到T的人出圈,输出出圈顺序。 考虑问实现约瑟夫环问题

1. 简单约瑟夫环问题:

N个人,编号从1~N围成一圈,输入一个数T,从1号开始报数,报到T的人出圈;下一人又从1开始报数,下一个报到T的人出圈,输出出圈顺序。

考虑问题:

报到T的人出圈,怎么表示出圈?要么删除对应的标号,其他的标号前移(如果是数组结构,要依次移动元素,效率低;如果是链表,删除结点也比较麻烦);要么设定状态标志位(声明一个状态数组status[N],status[i] ==0时表示未出圈,出圈时将对应第i号人的status置为出圈的次数;即status[i]=count)

解决了表示出圈的问题,那如何出圈?如果报数T大于总人数N时,需要取余才能将报号的范围限制在标号为0~N-1中。

流程呢?

while(出圈人数<总人数)

{

        从start下标依次查找status为0的下标(需要保存start下标)

                     计数

                判断计数是否等于T

              若计数等于T

                         出圈,更新对应下标的status,出圈人数加1

}


[cpp]  view plain  copy
  1. void joseph()  
  2. {  
  3.     int T,N;  
  4.     scanf("%d%d",&T,&N);  
  5.     //T为出列周期,N为N个人,即环的元素个数  
  6.     int status[1000];  
  7.     memset(status,0,sizeof(status));  
  8.     int start,end;  
  9.     start = -1;  
  10.     int count = 0;  
  11.       
  12.     while(count<N)  
  13.     {  
  14.         int i=0;  
  15.         while(1)  
  16.         {  
  17.               
  18.             start = (start+1) % N;  
  19.             if(status[start] == 0)  
  20.             {  
  21.                 i++;  
  22.             }  
  23.             if(i == T)  
  24.             {  
  25.                   
  26.                 ++count;  
  27.                 status[start]=count;  
  28.                   
  29.                 break;  
  30.             }  
  31.         }  
  32.           
  33.     }  
  34.       
  35.     for(int k=0;k<N;k++)  
  36.         printf("%d",status[k]);  
  37.       
  38. }  

2. 复杂约瑟夫环

1~N个人构成一圈,每个人手中有个号码,读入一个数T,从第一个人开始报数,报到T的人出圈;下一个人接着从1报数,报到出圈人手里的号码的人出圈,依次进行。


与简单约瑟夫环不同的是T变了;每出圈一个,要更新对应的T;

[cpp]  view plain  copy
  1. void rand_joseph()  
  2. {  
  3.     //如果约瑟夫环中的数是用户输入的数据时  
  4.     int N,data[1000],status[1000];  
  5.     memset(data,0,sizeof(data));  
  6.     memset(status,0,sizeof(status));  
  7.     int i=0;  
  8.     scanf("%d",&N);  
  9.     while(i<N)  
  10.     {  
  11.         scanf("%d",&data[i]);  
  12.         i++;  
  13.     }  
  14.     int T;  
  15.     scanf("%d",&T);//第一个周期由用户输入,其他的是出队用户对应的值  
  16.     int count = 0;  
  17.     int index = -1;  
  18.     while(count<N)  
  19.     {  
  20.         int i=0;  
  21.         while(1)  
  22.         {  
  23.             index = (index+1)%N;  
  24.             if(status[index] == 0 )  
  25.             {  
  26.                 i++;  
  27.             }  
  28.             if(i == T)  
  29.             {  
  30.                 ++count;  
  31.                 status[index] = count;  
  32.                 T = data[index];  
  33.                 break;  
  34.             }  
  35.         }  
  36.     }  
  37.     for(int i=1;i<=N;i++)  
  38.     {  
  39.         for(int j=0;j<N;j++)  
  40.         if(status[j] == i)  
  41.             printf("第%d个出列的是第%d人\n",i,j+1);  
  42.     }  
  43.   
  44. }  

3. 如果要求最后出圈的人的编号,还有简单的方法:

引用:http://www.cnblogs.com/EricYang/archive/2009/09/04/1560478.html

无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:

k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

[cpp]  view plain  copy
  1. #include <stdio.h>  
  2. int main()  
  3. {  
  4.     int n, m, i, s = 0;  
  5.     printf ("N M = ");  
  6.     scanf("%d%d", &n, &m);  
  7.     for (i = 2; i <= n; i++)  
  8.     {  
  9.         s = (s + m) % i;  
  10.     }  
  11.     printf ("\nThe winner is %d\n", s+1);  
  12. }  
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页