图像的高频信息和低频信息代表的含义(以奇异值分解实现图像压缩为例附实验说明)

图像高频信息和低频信息区别,博主讲的很好,借用下,后面附上自己的实验说明。

图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。

(1)什么是低频?
      低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,除去高频的就是低频了,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。

(2)什么是高频?

     反过来, 高频就是频率变化快.图像中什么时候灰度变化快?就是相邻区域之间灰度相差很大,这就是变化得快.图像中,一个影像与背景的边缘部位,通常会有明显的差别,也就是说变化那条边线那里,灰度变化很快,也即是变化频率高的部位.因此,图像边缘的灰度值变化快,就对应着频率高,即高频显示图像边缘。图像的细节处也是属于灰度值急剧变化的区域,正是因为灰度值的急剧变化,才会出现细节。
      另外噪声(即噪点)也是这样,在一个像素所在的位置,之所以是噪点,就是因为它与正常的点颜色不一样了,也就是说该像素点灰度值明显不一样了,,也就是灰度有快速地变化了,所以是高频部分,因此有噪声在高频这么一说。

      其实归根到底,是因为我们人眼识别物体就是这样的.假如你穿一个红衣服在红色背景布前拍照,你能很好地识别么?不能,因为衣服与背景融为一体了,没有变化,所以看不出来,除非有灯光从某解度照在人物身上,这样边缘处会出现高亮和阴影,这样我们就能看到一些轮廓线,这些线就是颜色(即灰度)很不一样的地方.

图1

这是原始的lena女神图像,尺寸是512*512的,以图像的奇异值分解实现图像压缩为例,奇异值分解后产生奇异值矩阵和左右奇异向量矩阵,通过丢弃小的奇异值所对应的奇异向量从而实现图像压缩,在这里小的奇异向量就是对应着图像的细节信息,包含噪声模糊因素等,奇异值分解实现图像压缩代价是丢失图像细节信息,这也是奇异值分解压缩的一个缺点和限制。我们具体来看下对于奇异值分解后产生的奇异向量矩阵,这里分别可视化左奇异向量矩阵的前5列和后5列来简单的说明先问题如图2所示。

图2

上面奇异向量矩阵的前5列信息,下面的表示后5列信息,我们可以看出前5列信息中对应着的是较大的排在前面的奇异值,变换幅度较小,这里代表的就是图像的低频信息,包含主要轮廓信息等,而下面的信息对应着是较小的奇异值对应的就是需要舍弃实现压缩目的的奇异值,可以看到里面是高频信息,这些信息包含着图像的噪声,模糊还有细节信息等。 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页